SPUR GEARBOXES

TSP-355

GEARBOXES WITH BEVEL & SPUR GEARS

2nd RELEASE

03/2010

ZTS Sabinov, a.s., Hollého no. 27 083 30 Sabinov, Slovakia *phone: 00421 51 4561 280, 245 fax: 00421 51 4561 257, 109 E-mail: <u>export@ztssabinov.sk</u> <u>www.ztssabinov.sk</u>* Ladies and Gentlemen,

this trade catalogue that is submitted to technical community presents long-term experience within the field of manufacture and application of driving gears.

Throughout the last four year, our team of specialists collected specific requirements, advices and recommendations of our customers that resulted in balanced product line being submitted. We believe that this product line will be applied in our present and also future partnership and cooperation.

First of all, let us provide you some basic information about our company.

ZTS Sabinov is a joint-stock company operating within engineering industry, established in 1957. The production of gearboxes comprises majority of production. Currently, ZTS Sabinov produces the following gearbox types:

spur bevel bevel and spur worm planetary

Gearboxes are produced in series as standard types with wide range of use in different industry branches. Besides them, ZTS Sabinov produces gearboxes for different applications that can be divided in following groups:

- § gearboxes for truck mounted and stationary concrete mixers
- **§** gearboxes for mining conveyers
- § gearboxes for cooling towers
- § gearboxes for mobile construction vehicles
- § gearboxes winches designed for lifting wagon platforms in railway transport
- § other

A large group consists also of gearboxes projected and produced based on customers' specifications or customer drawings.

Export territories and applications

Our products are exported to USA, Germany, Czech Republic, Great Britain, Ireland, Netherlands, Poland, countries of former Soviet Union, Hungary, Spain, Italy, Egypt, Syrian Arab Republic, India, United Arab Emirates, Taiwan, Thailand etc.

Our gearboxes are exported indirectly, as well, i.e. by suppliers of investment gross (technologies) as sugar – refineries, metalurgical plants, cement & calc producing plants, brickyards, power stations etc. and also as parts of final devices used in enterprises referred to.

Quality

In 1997, we implemented quality management system according to EN ISO 9001 regulation that we use in practice and we have held envirocertificate EN14001 since 2003, as well.

Basic contact information Address: ZTS Sabinov, a.s., Hollého 27, 083 30 Sabinov, Slovak Republic Tel.: 00421 51 4561280, 4561245 E-mail: export@ztssabino

Fax: 00421 51 4561109, 4561257

Sabinov, Slovak Republic E-mail: <u>export@ztssabinov.sk</u> Internet: http://www.ztssabinov.sk

1. INTRODUCTION

The trade catalogue covers: Double reduction spur gearboxes TSP2:

with axial distance of output node a=355

- § § with range of gears: 5 to 31.5
- **§** with power range: 102 to 1039kW.

Triple reduction spur gearboxes TSP3:

- § with axial distance of output node a=355
- with range of gears: 20 to 125 §
- **§** with power range: 34 to 464kW.

Triple reduction bevel and spur gearboxes TSR3:

- § with axial distance of output node a=355
- **§** with range of gears: 20 from 20 up to 125
- **§** with power range: 34 to 470kW.

The gearboxes are available in two basic versions:

- a. with solid output shaft.
- **b.** with hollow output shaft and:
 - cone shaft clamping element at output
 - cylindrical hole with groove
 - conical hole with groove
 - cylindrical hole and involute grooving

The design of gearboxes is adapted to heavy working conditions and explosive environment (as in mining industry) and the body moulds and housing cover, heat-treated shafts and gearing, bearings and labyrinth seals combined with rubber seals supplied by reputable companies meet that.

Bevel gearing is cemented and hardened. Spur gearing is cemented, hardened and ground. Body and cover of the housing are moulds. Moulds are made with coarseness Rz=100, what allows simple cleaning of housing surface. Lubrication of gearboxes is secured by splash from gearwheels. Gearboxes may be cooled by heat sink via gearbox housing walls or supplementary cooling, as the case may be.

If gearboxes are used for conveyor drives working under certain slope, one-way clutch that avoids reverse of gearboxes may be inserted to gearbox structure.

All gearboxes may be equipped with special accessories:

- Cooling - depends on loads transmitted:

§ cooling via fan on input shaft

- fan allows better air circulation around the gearbox, whereby it improves heat transfer through gearbox walls

oil cooling via water cooling embedded in gearbox Ş

- in such case, gearboxes are equipped with rolled cooling pipes that serve for supply and drain of cooling water

oil cooling by external circuit - external cooler §

- warm oil is pumped from gearbox to cooler, where the temperature drops down and cold oild is pumped through back to gearbox

- Oil preheating at ambient temperatures below + 5 °C it provides for a friendly gearbox startup,
- Device guarding against reverse of gearbox (interlocking device),

- Gearbox monitoring.

In order to secure gearbox operation monitoring, gearboxes may be supplied with holes (made according to customer requirements) for connection of:

- § oil flow indication,
- vibration sensor. §
- § housing temperature sensor,

§ oil temperature sensor,

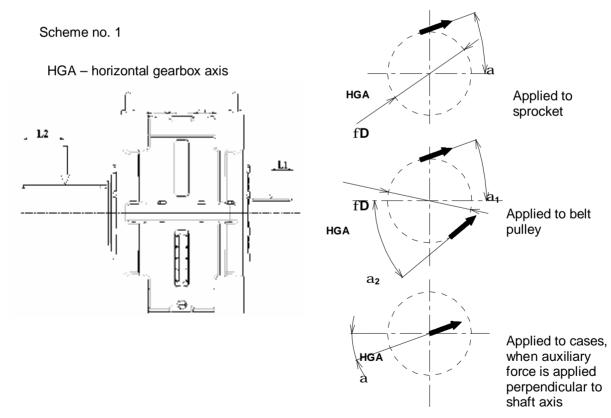
- Special requirements

Based on special requirements, gearboxes may be supplied according to requirement with a possibility of:

- § other surface treatment than referred to in point 5. Delivery,
- § input and output shaft according to customer's requirement.
- § possibility to connect torque catcher

2. GEARBOX TYPES

Chart no. 1


	VERSION	DENOMINATION
§	with solid output shaft	TS – 355 - J
§	with hollow output shaft and cone shaft clamping element	TS – 355 - DS

3. GEARBOX EFFICIENCY

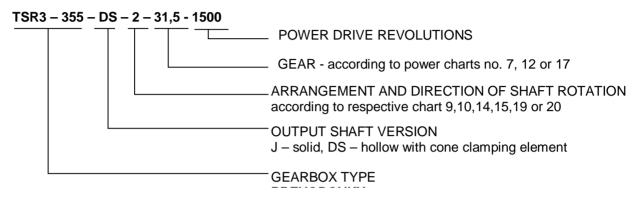
	Chart no. 2
GEARBOX TYPES	EFFICIENCY
Double reduction spur gearbox	0,975
Triple reduction spur gearbox Triple reduction bevel and spur gearbox	0,965

4. ADDITIONAL LOAD OF INPUT AND OUTPUT SHAFT

TSR, TSP gearboxes are calculated without considering additional forces acting on input and output shaft. These have effect especially on lifespan of bearings on these shafts, namely depending on size, direction and centre of these forces. Therefore, if it is necessary to take additional forces on these shafts (e.g. if belt pulleys are used) in account, such situation is to be consulted with manufacturer of gearboxes. Data according to Fig. 1 are necessary for exact determination of effect of additional forces.

5. DELIVERY

Gearboxes are mounted according to trade catalogues. They are delivered as stored on wooden europalletes.


Gearboxes may operate in dusty, humid and chemically unobjectionable environment, which does not deteriorate oil filling and does not reduce sealing capacity of rotary sealing.

Gearbox housing is split, whereas interface surfaces are caulked by sealing putty. Inner housing walls are coated with oil-resistant colour. Outer housing walls are coated with synthetic paint by default.

Gearbox is supplied fully assembled without connecting screws and oil filling. Interior of gearbox housing is preserved using conservation oil. Warranty period for preservation of internal parts of gearbox is 12 months.

6. ORDERING

Denomination of gearbox in order is according to following example:

Prior to ordering a gearbox, it is advisable to fill in "technical form to gearbox design" that is an annex to this catalogue and send it to TSR, TSP gearbox manufacturer in order to consult suitability of gearbox selection.

7. SELECTION OF GEARBOX

High operating safety and required lifespan of selected gearbox may be achieved only if all effects, to which gearbox is faced to during its operation are taken in account at selection of gearbox.

At selection of gearbox, it is necessary to proceed according to example in chapter 7.5. Coefficients in chapters 7.1 to 7.4 take in account deviations from calculation state.

7.1 Operational coefficient - k₁

Both TSP and TSR gearboxes are designed for 8 hours non-stop and non-beat daily operation. The k_1 coefficient (from Chart no. 3) takes in account gearbox load deviations from this calculation state.

				Chart no. 3		
Prime mover type	Net daily	Prime mover type according to Chart no. 7				
i nine novel type	operation time		II	III		
	Up to 8 hrs	1	1,2	1,3		
Electromotor, turbine	8 to 12 hrs	1,1	1,3	1,4		
	12 to 24 hrs	1,3	1,5	1,7		
Combustion 4 to Coulinder	Up to 8 hrs	1,15	1,35	1,4		
Combustion 4 to 6 cylinder engine, hydraulic motor	8 to 12 hrs	1,25	1,5	1,6		
	12 to 24 hrs	1,5	1,8	2,0		
Combustion 1 to 2 culinder	Up to 8 hrs	1,25	1,5	1,75		
Combustion 1 to 3 cylinder engine	8 to 12 hrs	1,4	1,7	2		
	12 to 24 hrs	1,75	2,1	2,45		

Machines and equipment corresponding to symbols I, II, III – from Chart no. 6 on page 7, 8, 9.

7.2 Coefficient of startup count - k₂

The k_2 coefficient (from Chart no. 4) takes in account effect of starting torque on lifespan of gearbox.

					Chart 110. 4		
Startup count per		Operational coefficient k ₁					
hour	1	1,15 – 1,25	1,4 – 1,5	1,6 – 1,75	2 and more		
1	1,0	1,0	1,0	1,0	1,0		
2 - 40	1,1	1,08	1,07	1,06	1,06		
41 - 80	1,4	1,3	1,23	1,18	1,1		
81 – 160	1,6	1,5	1,35	1,23	1,1		
Over 160	1,8	1,7	1,5	1,3	1,1		

7.3 Heat coefficients - k_{cw1} , k_{cw2} , k_{cw3} for gearbox selection

The k_{cw} coefficients (from Chart no. 5) are used for determination of heat output and cooling method.

														Chart	no. 5
Net		WITHC	OUT CO	OLING			FAN	I COOL	ING		E	MBED	DED C	OOLIN	G
operation time per		Ambier	k _{cw1}	erature			Ambier	k _{cw2} nt temp	erature			Ambier	k _{cw3} nt temp	erature	•
hour " [%]	10°C	20°C	30°C	40°C	50°C	10°C	20°C	30°C	40°C	50°C	10°C	20°C	30°C	40°C	50°C
100%	1,15	1,0	0,9	0,7	0,6	1,1	1,0	0,9	0,8	0,6	1,15	1,0	0,9	0,8	0,7
80%	1,35	1,2	1,05	0,9	0,7	1,2	1,2	1,0	0,9	0,7	1,35	1,2	1,1	1,0	0,8
60%	1,5	1,4	1,2	1,0	0,8	1,3	1,4	1,2	1,1	0,8	1,6	1,4	1,3	1,1	0,9
40%	1,7	1,6	1,4	1,1	1,0	1,8	1,6	1,4	1,2	1,0	1,8	1,6	1,5	1,3	1,1
20%	2,0	1,8	1,5	1,3	1,1	2,0	1,8	1,7	1,4	1,1	2,0	1,8	1,65	1,45	1,2

* Net operation time per hour indicates the percentage of one hour, during which a gearbox is in operation. If it works over one hour without interruption, 100 per cent is referred to.

7.4 Determination of starting torque

Maximum locked-rotor torque of motor may not exceed rated torque of gearbox on input shaft of gearbox multiplied by 1,8.

If power drive does not meet this condition, it may be achieved in operation e.g. by controlled start of powertrain (double reduction motors, frequency converter etc.), using a clutch with soft characteristics. It is not recommended to use drive with asynchronous motor and short-circuit armature, controlled via direct connection to power supply (stator winding is connected to a triangle).

	evices corre	esponding to symbols I, II, III – from	
<u>Chart no. 3</u>		Chart no.	6 - start
Pottery		Chipless-machining metal-worki	ng
Pug mill	П	machines	5
Clay mill	П	Seamers	111
Clay presses	111	Benders and flatteners	111
51		Drawing benches for	
Blowers		manufacture of wires	111
Hand blowers	I	Eccentric presses	111
Blowers with rotary cylinders	11	Drop-presses	111
Centrifugal blowers	П	Punching presses	П
Suction blowers	П	Riveting machine	111
Cranes, jacks		Pipe presses	111
Tower gantries	111	Forging presses	111
Fork-lift trucks	П	Wire- and bar drawers	111
Cranes and jacks:		Control mechanismes	11
- for heavy lifting	111	Mixers	
- for medium-weight lifting	П	Continuous movement concrete mixe	ers II
		Intermittent movement concrete mix	ersl
Mining industry		Mixers for various consistency and	
Gritters for bank	П	stable composition liquids	11
Mining grinders	111	Mixers for persistent consistency liqu	ids I
Briquetting presses	111	Stirrers	
Pulley blocks	Ш	Stirrers for liquids containing	
Hoisting machines	111	solid particles	11
Belt conveyors	111	Stirrers for clear liquids	I
Mining fans	111	Mills	
Generators		Rotary mills	11
Constant load generators	I	Disk masticators	111
Welding generators (alternators)	111	Ball mills	111
		Drum cleaners	111
Excavators		Swing-hammer mills	111
Belt excavators with conveyor	II	Drum mills	111
Chain bucket-wheel excavator	111	Drum and bar mills	111
Wire pulley block excavators	II		
Servicing hoists	II	Ship power drives	
Suction pumps	111	Main ship power drives	11
Workbench power drives	111	Auxiliary ship power drives	II
Wheel bucket-wheel excavator	II		
Grinders		Machining devices	
Mineral crusher	111	Main power drives	II
Stone crusher	111	Auxiliary power drives	
		Woodworking machines /general/	II

Examples of machines and devices corresponding to symbols I, II, III – from Chart no. 3

Pumps

Pumps	
2-cylinder piston pumps with	
double effect	Ш
3 and more cylinder piston pumps	Ш
Immersion pumps	
Centrifugal and gear-type pumps	
for liquids with appropriate consistency	11
Centrifugal and gear-type pumps	
for liquids with various consistency	11
Light dosing pumps	Ш
Heavy dosing pumps	
Rotary furnaces	11
Conveyors	
Bucket-wheel conveyors with high load	II
Conveyors, feeders	
Belt conveyors	11
Conveyors – production belts	Ш
Conveyors with normal load	I
Conveyors with high load	
Conveyors with uneven load	
Forward - reverse motion conveyors	
Suspended cableway	11
Apron conveyors	
Belt vibrating conveyors	111
Belt conveyors with even work	11
Rubber industry	
Rubber rolling machines	111
Rubber mills	
Stirrers	
Plate machines	
Screening machines	П
Metallurgical industry	
Blast-furnace blowers	
Converters	
Slag crusher	
Inclined hoists of blast-furnaces	
Slag mills	
Continuous casting devices	
Oil refining industry	П
Presses for paraffin filtration Pumps for oil pipelines	

Chart no. 6 - cont.

	-
Treating machines Drilling cranes for rotary drilling Paper industry Belt conveyors Bleaching machines Spinning machines Spinners and intake cylinders Glazed cylinders Beaters Whetstones Rolling machines Wet presses Stirrers Drying cylinders Upsetting devices and thickeners Textile industry Grinding machines Dyeing machines Fillers Carding machines Willowing machines Annular spinning machines Soaping machines Frame expansion machines Fine spinning machines	
Sleeve-type drying chambers	Ш
Sieves Flat sieves Sieves for air scrubbers Sieves with moving water inlet Wire screens for stones and sand	
Compressors	

Compressors with rotary piston II Piston-type compressors (multi-cylinder)II 2-cylinder piston-type compressors III Single-cylinder piston-type compressors III

Gears

Light gears I Gears for power drives of machine tools II

Examples of machines and devices corresponding to symbols I, II, III – from Chart no. 3

Conveying equipment Wagon tipplers Wagon pullers	
Rolling mills	
Main power drives	
Rolling lines for slab bloom and blocks	*
Thin sheet rolling lines	
for hot-rolled sheet metal	Ш
Rolling lines for thin bars and wires	Ш
Rolling lines for thick sheets	
and wide tapes	Ш
cold-rolling	*
Rolling lines for crowbars	
and sheet metal	
Rolling mills for wheel tyres and plies	111
Rolling lines for heavy profiles	
and gross rolling	*
Rolling lines for flat steel	
and medium bars	*
Auxiliary equipment	
Sheet-doubling machines	
Reverse mechanismes	
Wire reeling device	
Turnings remover	Ш
Shears for billets and warped castings	*
for sheet metal	*
Crank shears	
Cooling benches	
Rotary shears or trimming shears	 *
Straightening presses	
Roller straighteners	
Pulling devices	11
Cold- and hot saws	
Devices for disassembly of cylinders	II
Auxiliary power drives	*
Sliding devices	Ш
Working and feeding tension devices	
Slab-type lifters and hoist benches	111

Chart no. 6 – en	d
Roller conveyors	Ш
Tube rolling mills	
Rolling mills for cold calibration	
Pilgrim rolling mills	*
Reduction calibrating tube rolling mills	Ш
Die hammers and flatteners	Ш
Rolling and finishing machines for tube	sIII
Tube welding machines	Ш
Rolling mills with skew cylinders	*
Triblet rolling mills	*
Expansion rolling mills	Ш
Centrifuges	
Light centrifuges	П
Heavy centrifuges	Ш

*Industrial machines, in case of which, special conditions must be taken in account. Used motion coefficients are test values for normal operating conditions.

CALCULATION

7.5 Example of selection of gearboxes

	7.5.1 Input data		
	Prime mover:	– electromotor:	$P_e = 200 kW$
			n ₁ =1500 rpm
٠	Driven machine:	– mining conveyor,	
		– work type	III,
		– power utilized:	$P_v = 180 kW$,
		 necessary output revolutions of gearbox 	n _{output} =59 rpm,
		 net operation time of gearbox 	19 hours per day
		– net operation time per hour in %	80%
		 startup count per hour 	10 startups per hour
		 ambient temperature 	30 °C
	Coorboy type	triple reduction onur georbox loid on the floor with	out an antian of battom appling

• Gearbox type - triple reduction spur gearbox laid on the floor without an option of bottom cooling

7.5.2 Basic calculation

Required gear: $i = n_1/n_{output}=25,42$ Selected closest gear:i = 25Required gearbox power: $P_{1N} = P_V \times k_1 \times k_2 = 180 \times 1,7 \times 1,06 = 324,36kW$ Selected gearbox type:TSP3-355 with i = 25 and $P_1 = 373$ kW at 1500 rpm

- calculated necessary gearbox power [kW]
 – catalogue gearbox power [kW]
 – electromotor power [kW]
 utilized power of electromotor [kW]
 input revolutions to gearbox [ot/min]
 operating coefficient – Chart no. 3
- startup count coefficient - Chart no. 4

7.5.3 Inspection of gearbox for heat output P_t

 $P_{t1} = 160 kW - heat output according to Chart no. 13$

 k_{cw1} = 1,05 – according to Chart no. 5

 $P_t = P_{t1} \times k_{cw1} = 160 \times 1,05 = 168$ kW – maximum power that can be transmitted via gearbox without cooling.

 $P_t < P_V$ (168 < 180) kW

This data indicates that cooling is necessary. We will carry on with inspection of heat output for fan cooling.

 $P_{t2} = 224kW - heat output according to Chart no.13$

 k_{cw2} = 1 – according to Chart no. 5

 $P_t = P_{t2} \times k_{cw2} = 224 \times 1 = 224$ kW – maximum power that can be transmitted via gearbox at fan cooling.

 $P_t \ > \ P_V$ ($\ 224 \ > \ 180$) kW – This data indicates that fan cooling is sufficient.

7.5.4 Inspection of locked-rotor torque.

Maximum locked-rotor torque of motor may not exceed rated torque of gearbox on input shaft of gearbox multiplied by 1,8.

 M_{max} = 1,8 x 9550 x P₁ / n₁ =1,8 x 9550 x 373 / 1500 = 4274,58Nm

Locked-rotor torque of electromotor from catalogue of electromotors: $M_z = 2,2 \times M_n = 2,2 \times 9550 \times P_e / n_1 = 2,2 \times 9550 \times 200 / 1500 = 2801,3Nm$

 $M_z < M_{max}$ - this data indicates that permissible locked-rotor torque will not be exceeded.

If power drive does not meet this condition, it may be achieved in operation e.g. by controlled start of powertrain (double reduction motors, frequency converter etc.), using a clutch with soft characteristics.

TSP2-355

8. POWER CHARTS

8.1 Double reduction spur gearboxes TSP2

8.1.1 Nominal gears,	Chart no. 7		
Nominal gear	Re (only for reference - d	Gearbox power	
i _n — (real gear in brackets)	Input n₁ [rpm]	Output (calculated from n₁=1450, 950 a 700 rpm n₂ [rpm]	P₁ in kW
	1500*	288,7*	1039*
5 (5,022)	1000	189,2	773
(3,022)	750	139,4	587
	1500*	226,9*	1039*
6,3 (6,391)	1000	148,6	773
(0,391)	750	109,5	587
	1500	184,4	897
8 (7,862)	1000	120,8	667
(7,002)	750	89	538
	1500	146,1	796
10	1000	95,7	592
(9,923)	750	70,5	465
	1500	115,7	681
12,5 (12,526)	1000	75,8	501
(12,520)	750	55,9	366
	1500	91,2	549
16 (15,906)	1000	59,7	392
(13,900)	750	44	287
	1500	72,9	466
20 (19,894)	1000	47,7	305
(13,034)	750	35,2	222
05	1500	58,6	374
25 (24,737)	1000	38,4	244
(24,737)	750	28,3	178
04.5	1500	46,7	216
31,5 (31,053)	1000	30,6	140
(31,000)	750	22,5	102

* Gears 5 and 6,3 may operate only at input revolutions 1500 rpm only with special closed circuit lubrication, that is not a part of default equipment.

8.1.2 Heat output		Chart no. 8
Cooling method		Gearbox heat output P_t in kW
Without cooling	P _{t1}	206
With fan cooling	P _{t2}	255
With embedded cooling circuit	P _{t3}	297

TSP2-355

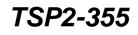
The TSP2-355 gearboxes are designed for transmission of catalogue load in the direction of input shaft rotation according to Charts no. 9 and 10. Marking 1 to 6 is applied to direction of clockwise input shaft rotation and values 1R to 6R to direction of anti-clockwise input shaft rotation. If it is necessary to use gearbox for both directions of input shaft rotation, size of power transmitted must be consulted with gearbox manufacturer, since power transmitted is lower at reverse.

					С	hart no. 9
Supplementary no.	1	2	3	4	5	6
Arrangement of ends and shaft running direction						
Supplementary no.	1R	2R	3R	4R	5R	6R
Arrangement of ends and shaft running direction						

♦ TSP2 - 355 - J

Foot version with solid output shaft

Arrows indicate connection point and running direction of driving and driven device.

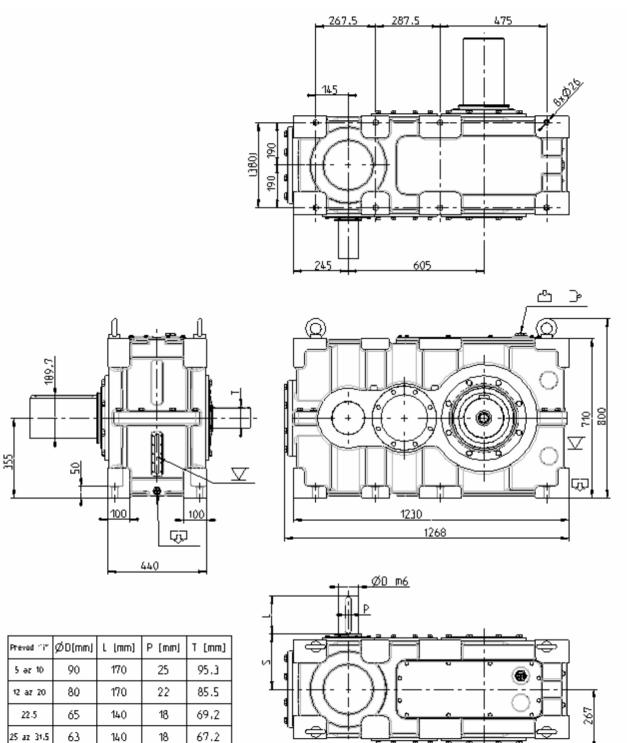

◆ TSP2 - 355 - DS

Foot version with hollow output shaft and cone shaft clamping element

Chart no. 10

Supplementary no.	1	2	3	4
Arrangement of ends and shaft running direction				
Supplementary no.	1R	2R	3R	4R
Arrangement of ends and shaft running direction				

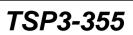
Arrows indicate connection point and running direction of driving and driven device.


20

ŀ

<u>Ø180m6</u>

45

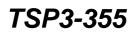

Scheme no.2

Prevedenie	Տ լատյ
bez ventilatora	247
s ventilatorom	325

Approximate weight of TSP2-355 gearboxes is 1355kg.

8.2 Triple reduction spur gearboxes TSP3

8.2.1 Nominal gears, revolutions, power


Chart no.12

	Revo	olutions	
Nominal gear		real revs depend on type of power	
i _n	driv	Gearbox power	
(real gear in brackets)	Input	Output (calculated	P₁ in kW
	n₁ [rpm]	from n ₁ =1450, 950 a 700 rpm n₂ [rpm]	
	1500	72,1	464
20	1000	47,3	315
(20,101)	750	34,8	230
	1500	57,3	360
25	1000	37,6	254
(25,287)	750	27,7	186
	1500	46,2	309
31,5 (31,393)	1000	30,3	205
(31,393)	750	22,3	150
	1500	36,6	252
40 (39,627)	1000	24,0	165
(39,027)	750	17,7	122
	1500	28,5	195
50 (50,926)	1000	18,7	127
(30,320)	750	13,7	93
	1500	22,9	158
63 (63,239)	1000	15,0	103
(00,200)	750	11,1	75
	1500	18,0	117
80 (80,356)	1000	11,8	76
	750	8,7	56
400	1500	14,5	93
100 (100,218)	1000	9,5	60
(100,210)	750	7,0	44
125	1500	11,6	64
(124,756)	1000	7,6	44
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	750	5,6	34

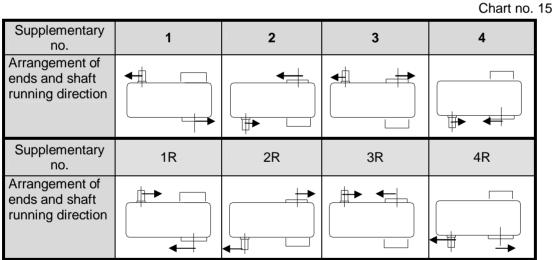
8.2.2 Heat output

Chart no.13

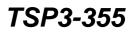
Cooling method		Gearbox heat output P_t in kW
Without cooling	P _{t1}	147
With fan cooling	P _{t2}	182
With embedded cooling circuit	P _{t3}	212

The TSP3-355 gearboxes are designed for transmission of catalogue load in the direction of input shaft rotation according to Charts no. 9 and 10. Marking 1 to 6 is applied to direction of clockwise input shaft rotation and values 1R to 6R to direction of anti-clockwise input shaft rotation. If it is necessary to use gearbox for both directions of input shaft rotation, size of power transmitted must be consulted with gearbox manufacturer, since power transmitted is lower at reverse.

					С	hart no.14
Supplementary no.	1	2	3	4	5	6
Arrangement of ends and shaft running direction						
Supplementary no.	1R	2R	3R	4R	5R	6R
Arrangement of ends and shaft running direction						

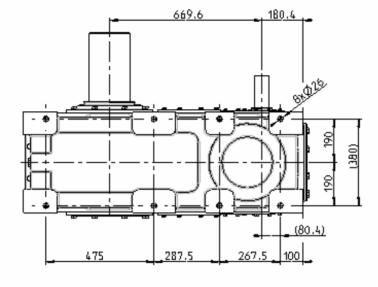

♦ TSP3 – 355 - J

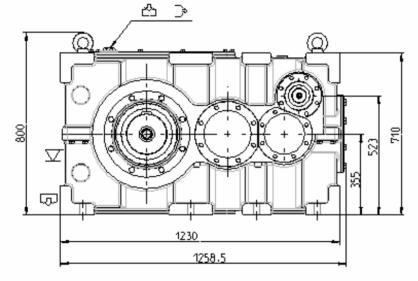
Foot version with solid output shaft

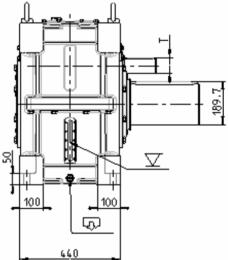

Arrows indicate connection point and running direction of driving and driven device.

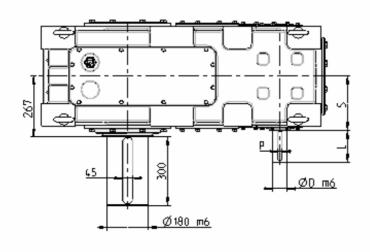
♦ TSP3-355 - DS

Foot version with hollow output shaft and cone shaft clamping element




Arrows indicate connection point and running direction of driving and driven device.




8.2.3 Connecting dimension of TSP3-355-J type gearbox

Scheme no. 3

Prevad "i"	ØO(mm)	נ [ההו	P (mm)	T (mm)
20 az 50	65	140	18	69.2
63 az 125	45	110	14	48.5

Prevedenie	S [mm]
bez ventilatora	239
s ventilatorom	325

Approximate weight of TSP3-355 gearboxes is 1370kg.

8.3 Triple reduction bevel and spur gearboxes TSR3

Chart no. 17

TSR3-355

o.s. i Nominal gears,		olutions	
Nominal gear	(only for reference – dri	Gearbox power	
i _n ── (real gear in brackets)	Input n₁ [rpm]	Output (calculated from n ₁ =1450, 950 a 700 rpm n ₂ [rpm]	P₁ in kW
	1500	75,0	470
20 (19,329)	1000	49,1	313
(13,323)	750	36,2	230
05	1500	57,6	356
25 (25,165)	1000	37,8	260
(23,103)	750	27,8	192
24.5	1500	45,0	300
31,5 (32,2)	1000	29,5	203
(02,2)	750	21,7	150
40	1500	36,6	252
40 (39,573)	1000	24,0	165
(00,070)	750	17,7	122
50	1500	28,4	195
50 (51,012)	1000	18,6	128
(01,012)	750	13,7	93
60	1500	23,0	132
63 (63,137)	1000	15,0	86
(00,107)	750	11,1	63
00	1500	18,2	114
80 (79,577)	1000	11,9	74
(10,011)	750	8,8	54
100	1500	14,6	95
(99,471)	1000	9,6	62
(00, -11)	750	7,0	45
405	1500	11,5	64
125 (126,316)	1000	7,5	45
(120,010)	750	5,5	34

8.3.1 Nominal gears, revolutions, power

8.3.2 Heat output		Chart no. 18
Cooling method		Gearbox heat output $P_t $ in kW
Without cooling	P _{t1}	154
With fan cooling	P _{t2}	235
With fan and embedded cooling circuit	P _{t3}	299

TSR3-355

The TSR3-355 gearboxes are designed for transmission of catalogue load in the direction of input shaft rotation according to Charts no. 9 and 10. Marking 1 to 6 is applied to direction of clockwise input shaft rotation and it is necessary to use them in preference. The 1R to 6R values for direction of anticlockwise input shaft rotation may be selected only exceptionally, if is is impossible to provide for clockwise input shaft rotation. If it is necessary to use gearbox for both directions of input shaft rotation, size of power transmitted must be consulted with gearbox manufacturer, since power transmitted is lower at reverse.

◆ TSR3 - 355 - J

Foot version with solid output shaft

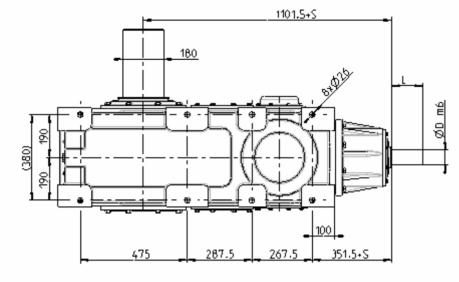
Foot version with solid output shaft				Chart no. 19		
Supplementary no.	1	2	3	4	5	6
Arrangement of ends and shaft running direction						
Supplementary no.	1R	2R	3R	4R	5R	6R
Arrangement of ends and shaft running direction						

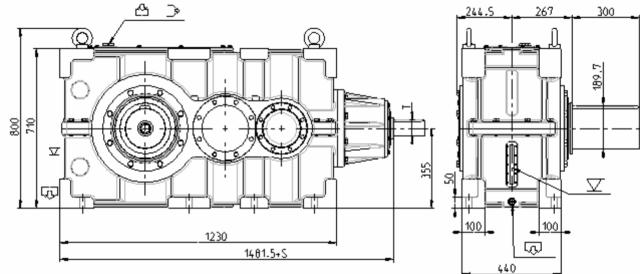
Arrows indicate connection point and running direction of driving and driven device.

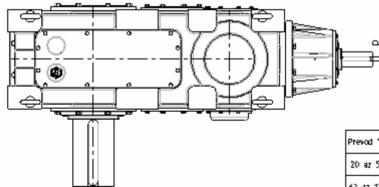
TSR3 - 355 - DS

Foot version with hollow output shaft and cone shaft clamping element

			Ŭ	mart 110. 20
Supplementary no.	1	2	3	4
Arrangement of ends and shaft running direction				
Supplementary no.	1R	2R	3R	4R
Arrangement of ends and shaft running direction				


Chart no. 20


Arrows indicate connection point and running direction of driving and driven device.

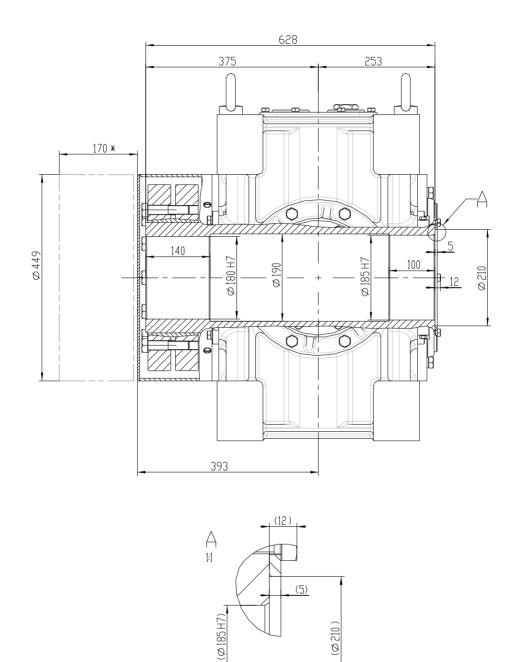

TSR3-355

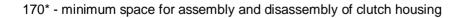
8.3.3 Connecting dimension of TSR3-355-J type gearbox

Scheme no. 4

Prevod "i"	ØO[mm]	լ [տա]	P [mm]	T (mm)
20 az 50	65	140	18	69.2
63 az 125	45	110	14	48.5

Prevedenie	Տ (տոյ	
bez ventilatora	0	
s ventilatorom	78	


Approximate weight of TSR3-355 gearboxes is 1410kg.


<u>45</u>

TSP2-355-DS, TSP3-355-DS, TSR3-355-DS

8.4 Connecting dimension of hollow output shaft

Scheme no. 5

<u>Technical form for gearbox design.</u>

		Enquiry no.:			
		e-mail:			
Project / country of destination					
Gearbox type and version (check bo	ex next to required parameters):				
TS P 2 - 355 - J - R 3 DS	1 R 2 R R Required R Revolution	rpm			
	3 R gear ratio on input				
	4 R shaft of				
	5 R gearbox				
	6 R				
	*				
* other version – please describe:					
POWER DRIVE					
Electromotor Combu	stion 4+ cylinder engine	Combustion 1 to 3 cylinder engine			
Turbine	Hydraulic motor	**			
** other power drive – please descril	be:				
Rated gearbox power:					
DRIVEN MACHINE					
Type of driven machine (please indicate	. ,				
Work nature: light	I medium	II heavy III			
Examples for determination of work nature ar	e referred to in Chart no. 7.				
Real power demand Net operation time per hour	•	eration time per day hrs. count per hour			
ENVIRONMENT					
Prevailing ambient temperature	°C				
Ambient temperature variation throughout the year: maximum value°C					
minimum value°C					
Description of environment (humidity, dust nuisance, chemical contamination etc.)					

REQUIREMENTS ON SPECIAL ACCESSORIES

<u>Gearbox cooling</u> :Fan	Water co	ooling	Outer circu	uit with cooler
Oil preheating	Device guarding aga	inst reverse of gear	rbox after power	drive shutoff
Gearbox monitoring: Vibrations	Oil		lousing Oi erature Oi	I temperature
Other special requirements:				
Language to be used in accompa Slovak E	nying documentation:	German	Polis	sh
LOCATION AND DIRECTION OF	APPLICATION OF	AUXILIARY FORCI	ES	
Location and direction of auxiliary force application for output shaft			Location and direc auxiliary force app for input shaft	

It is necessary to draw direction and location of auxiliary forces to the scheme according to instructions in Chapter 4. It is necessary to draw auxiliary force direction in side projection as in view on the front of shaft end (applicable for all versions).